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BACKGROUND

Quantitative daylight modelling is founded on
factor approach which gives a measure of illu
under CIE standard overcast sky conditions.

Mirror-box artificial skies can reproduce reas
approximations to the standard overcast sky
pattern. They provide a controlled luminous e
daylight factor measurement in scale models

Although it is the dominant approach, the lim
daylight factor paradigm are manifest:

• A single, relatively simple sky luminanc
• Illumination from the sun is not conside
• Daylight factors are invariant with respe
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 DLS (Cropper).

light profiles at
BEYOND DAYLIGHT FACTORS: CO

SIMULATION

Arbitrary sky and sun conditions (e.g. overca
intermediate, with/without sun, measured pa
accurately modelled using computer simulati
Radiance).

Efficient prediction of time-varying daylight ill
using Radiance-based techniques has been
by a number of researchers:

• XDAPS (Mardaljevic), end-user version
• DAYSIM (Reinhart).

Typically compute annual time-series of day
hour (or shorter) time-step.
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BEYOND DAYLIGHT FACTORS: PHY

MODELLING

There are now a number of sky simulator do
that are capable, in principle, of modelling an
luminance distribution. SSDs are typically a 
(several hundred) of independently controlle
arranged in a hemi-spherical pattern.

Examples include:
• University College London, UK (270 lam
• Cardiff University, UK (640 lamps, 8m).
• EPFL Lausanne, Switzerland (partial d
• Seksui Corporation, Japan (unknown).
• Bartenbach LichtLabor, Austria (393 lam
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PHOTOGRAPHS OF SSDS
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The sky luminance distribution is correct onl
of the (hemi)-sphere - otherwise there is a pa
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PARALLAX ERRORS (QUANTIFICAT

Error in illuminance with displacement along
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EVALUATION OF PARALLAX ERROR

ON ‘DESIGN GOAL’ FOR SSDS

The magnitude of the parallax error will depe
particular luminance pattern. As an infinite n
patterns are conceivable, the following credib
goal’ was devised:

• ‘Accurate’ prediction of vertical south ill
CIE clear sky conditions for a number o

• Sun positions based on the annual dist
given locale.

The illuminance effect of the CIE clear sky o
considered - the sun position provides the lo
clear sky luminance pattern.
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RATIONALE FOR THE DESIGN GOA

• Vast majority of building designs have v
• South-facing surface ‘sees’ to the circu
• Clear sky conditions can occur for any s

SSD should perform well for all of these
• If external vertical illuminance cannot b

predicted, then internal illuminances wi

The aim therefore was to determine, subject
parallax errors, what volume of space in the 
‘accurate’ values of VS illuminance for all the
skies - this space would contain the scale m

This space is called the Parallax-Bounded V

The extent of the PBV was determined for th
bands: high (±10%), medium (±25%) and low
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EVALUATION OF THE PBV
The PBV was accurately determined using c
simulation (the Radiance system). In fact, it c
impossible to do this using measurements in
because of confounding factors, principally:

• Incomplete coverage of the sky dome.
• Stability of the luminous output of the la

In contrast, with simulation it was possible to
luminous environment - geometry and sky lu
pattern - with exact precision and compute th
to an accuracy better than ±1%. Thus the PB
the theoretical limits of performance of SSDs
The particular characteristics of an actual dom
introduce other errors.
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TEST VOLUME OF THE SSD
The test volume was a ‘block’ that encompas
of the SSD tested for parallax. The dimensio
by 0.9R by 0.45R. The base was centred on
the block occupies ~17% of the hemisphere’
block was used to locate a 3D array of (3610
points that were equally spaced in the x y z d
a separation of 0.05R.

0.45R

0.45R0.45R

z

x

R

Sky dome

-x Origin
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DISTRIBUTION IN SUN POSITION

The sun positions were based on the range 
throughout the year for the Midlands (UK). A
points that span a major part of the distributi
selected (+ symbols). These were the sun-po
each of the 22 CIE clear sky configurations e
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PROCEDURE

• Compute vertical south illuminance at e
points of the test volume.

• Repeat for each of the 22 clear sky con
• Determine, for each of the accuracy ba

points that gave ‘accurate’ predictions f
configurations, i.e. a volume of intersec

S B1 B3 B∩ ∩=

B1

B2

B3
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SIMPLE AND COMPOUND PARALLA

SSD illuminance measurements need to be 
using a simultaneous measurement of unobs
horizontal illuminance.

The lamps are programmed to reproduce a p
luminance distribution (e.g. CIE clear sky) - n
made to achieve a specific horizontal illumin

Thus, for each sky modelled in a SSD, the ho
illuminance that it produces is not known a p
be measured.

This measurement is called the normalizatio
and it is applied as a factor to all the other illu
measured in the model.
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SIMPLE AND COMPOUND PARALLA

(CONT’D)
Typically, the normalization illuminance (i.e. u
horizontal illuminance) is taken simultaneous
illuminance measurements for the scale-mod

The most practical way to achieve this is to p
photocell on top of the scale model.

If measured anywhere other than the origin, 
to be the case when a scale model is presen
horizontal illuminance will be subject to its ow
error.

This will add to the already present (i.e. simp
error (SPE) in the vertical illuminance giving 
referred to here as the compound parallax er



16 of 31

PARALLAX

 the difference
o parallax
sewhere in the

me as the
 error in the
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 above the
 in x-y plane).

d for both the
llax error on
RECAP: SIMPLE AND COMPOUND

ERRORS

The simple parallax error (SPE) results from
in vertical south illuminance between the zer
value (i.e. at the origin) and that measured el
dome.

The compound parallax error (CPE) is the sa
SPE, but it includes the effect of the parallax
measurement of the normalization illuminanc

The normalization illuminance was evaluated
origin (i.e. along the z-axis, no displacement

The parallax bounded volume was determine
simple parallax error and the compound para
the basis of the design goal.
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LOCATING STRATEGIES FOR EVALU

CPE
The magnitude of the CPE will depend on rel
of the measurement points for the vertical so
normalization (n) illuminances.
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SCALE MODEL SIZE AND SSD DI

The maximum (linear) dimension of a scale m
related to the diameter of an actual SSD by a
the PBV to a cube.
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SUMMARY

Given the likely mode in operation of a SSD,
appear that the PBVs for compound parallax
describe the theoretical performance limit of 
findings have implications for the use and op
SSDs and raise a number of issues:

• High accuracy (±10%) predictions are p
unattainable on the basis of parallax er

• The PBVs for medium accuracy (±25%
limitations on scale-model dimensions,
dome at UWCC.

• Any expansion of the design goal is like
further diminution of the PBV.
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SUMMARY (CONT’D)
• Practical operation of a SSD will introdu

other factors that will add to the uncerta
measurements taken from scale model
less than exact reproduction of clear sk
patterns, incomplete sky coverage, and
inaccuracies in scale-model constructio

• The sky was modelled as a diffuse emi
whereas actual SSDs are comprised of
of luminaires providing directional illum
field in an actual SSD therefore is likely
complex than that modelled here. The p
characteristics of a particular SSD, bas
photometry, could be modelled using lig
if the data were available.
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SPECIAL CASES

There may be instances, say for models with
reflectance, where the accuracy of internal il
measurements is more dependent on the dir
luminance through the window than the vertic
at the plane of the window.

For these special circumstances, the effectiv
be larger than those evaluated here. Howeve
resulting from incomplete sky coverage could
significant when the ‘view’ through the windo
include a large patch of ‘black’ sky between 

‘View’ of incom
sky from insid
space.
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CONCLUSION

The theoretical limits of performance of SSD
parallax errors alone, are sufficient to bring i
the practicality of SSDs as an instrument for 
benchmark, high-accuracy illuminance data u
conditions. It would appear that no-better tha
accuracy (±25%) is attainable, and that othe
factors may make that difficult to achieve.

The accuracy of illuminance modelling in SS
readily assumed and needs to be proven.

Note - the simulation of annual illuminance p
SSDs has yet to be demonstrated.
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of Architecture website:
h/envlab/skexmpl3.html
POSTSCRIPT: SIMULATION VERSUS

There are a number of other application area
simulation-based approaches excel over sca
For example, modelling irradiation in dense u
environments.

Example shows qualitative
assessment of solar access
using a state-of-the-art
sky simulator and physical
model.

Image taken from Welsh School 
http://www.cf.ac.uk/archi/researc
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TY MODEL

test challenge

Texture mapped
images of 3D
city model
SAN FRANCISCO - A COMPLEX CI

Dense urban environments provide the grea
for simulation tools.
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SOLAR ACCESS REVEALED
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Steep gradients in solar access
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SOLAR ACCESS QUANTIFIED

Facade areas in the heig
highlighted green

Facade area graded for total annual irradiation 
above ground level
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A ROLE FOR SSDS?
SSDs could be employed for validation exerc
they would be used to provide a controlled lu
environment rather than attempting to mimic
luminous pattern.

The rationale here is that Radiance can do a
modelling the actual SSD (individual lamps, 
etc.) than the SSD can do of modelling realis

Thus measurements in an SSD could be use
Radiance models of light transmission for co
materials.

(Could someone mention daylight coefficient


